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1. INTRODUCTION

For the identi"cation of non-linear systems, new approaches have recently been formulated
based upon the &&reverse path'' analysis [1}11]. Extensive application of the &&reverse path''
analysis for identifying single-degree-of-freedom (s.d.o.f.) systems has been demonstrated
[1}8]. Others have extended the work for identi"cation of multi-degree-of-freedom
(m.d.o.f.) systems although di!erences in procedure exist [9}11]. For example, Rice and
Fitzpatrick [11] use the &&reverse path'' analysis to formulate an identi"cation process and
their approach is illustrated by identifying a two-degree-of-freedom (d.o.f.) linear system
with repeated natural frequencies and a two-d.o.f. non-linear system with cubic elastic
forces. Richards and Singh [9] also utilize the &&reverse path'' analysis to formulate yet
another procedure for identifying m.d.o.f. non-linear systems and apply the method to
three- and "ve-d.o.f. systems with asymmetric and distributed non-linearities. To illustrate
the essential similarities and di!erences that exist between these two methods, both
procedures are formulated on a common basis and critically analyzed; and,
a computational example is given illustrating the unique models identi"ed by the two
di!erent identi"cation methods. For the sake of brevity, the approach used by Rice and
Fitzpatrick [11] will be referred to as Method A and the approach used by Richards and
Singh [9] will be referred to as Method B.

2. INITIAL DERIVATION OF THE TWO APPROACHES

Identi"cation of a mechanical or structural non-linear system from the &&reverse path''
analysis begins by measuring an applied random excitation f (t) and vibration response
x(t). The measured data is then used to estimate a model to describe the physical
system. The model originates from the generalized set of N coupled di!erential equations of
motion

M< xK (t)#C< x5 (t)#K< x (t)#N[x (t), x5 (t)]"f (t), (1)
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where M< , C< and K< are estimated mass, viscous damping and sti!ness matrices, respectively.
Depending on the a priori knowledge of the locations and types of non-linearities present,
the operator N[x(t), x5 (t)] is composed of non-linear functions to best describe the restoring
forces. If the locations of non-linearities and their respective forms are uncertain, additional
functions may be included to capture the possible behavior of these unknown
non-linearities. For example, it is feasible to assume non-linearities at all locations and
attempt to describe these non-linearities by separate polynomial expansions. Successful
identi"cation will yield non-zero coe$cients of signi"cant terms in the expansion, and
insigni"cant terms will have coe$cients equal or close to zero. However, computation may
become excessive and numerical conditioning problems may result. Therefore, any a priori
knowledge of the locations and types of non-linearities should be employed to reduce the
complexity of N[x(t), x5 (t)], i.e., non-linear functions should only be included where
non-linearities are likely to be located and these functions should contain terms with high
probabilities of describing the nature of the non-linear restoring forces.

The Fourier transform F[ )] is applied to equation (1) to obtain a frequency domain
model

B< (u)X(u)#C (u)"F(u),

X(u)"F[x (t)], C (u)"F[N[x (t), x5 (t)]], F (u)"F[f (t)], (2a}e)

B< (u)"!u2M< #iuC< #K< ,

where B< (u) is an estimate of the dynamic sti!ness matrix. Beyond this initial system model
described by the set of coupled non-linear frequency domain equations (2a), the "nal models
identi"ed by Methods A and B di!er. Both methods essentially identify functions to
describe the non-linear nature of the restoring forces. However, Method A identi"es s.d.o.f.
frequency response functions (FRFs) from which mass, damping and sti!ness properties can
be determined to represent the underlying linear system. Also excitations must be applied at
each response location in order for the entire system to be identi"ed. In contrast, Method
B identi"es FRFs in the m.d.o.f. system context. The m.d.o.f. parameter estimation
techniques [12] are then employed to extract modal parameters of the underlying linear
system. In addition, it is not necessary for excitations to be applied at every response
location for full identi"cation of the system.

3. METHOD A

In Method A, each equation of the N-dimensional model given by equation (2a) is
considered individually:
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where p indicates the pth equation of the set of N equations (2a), and mL
pl
, cL

pl
and kK

pl
are the

estimated elements from the pth row and lth column of the mass matrix M< , damping matrix
C< and sti!ness matrix K< , respectively. The summation consists of n non-linear functions
y
pj

(x(t)) chosen to describe the non-linear restoring forces acting on the pth d.o.f., where
>
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(x(t))] are the spectra of these functions and aL
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are their respective estimated
coe$cients. Note that y
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(x (t)) are known quantities calculated as a function of the



LETTERS TO THE EDITOR 363
measured response x (t). For instance, assuming a cubic non-linear sti!ness connecting m
1

and m
2

of some arbitrary system, then y
pj

(x(t))"(x
1
(t)!x

2
(t))3.

Although the next step does not e!ect the results, it is included in order to remain
consistent with the formulation [11]. The non-linear functions y

pj
(x(t)) are multiplied out

and terms of like form z
pj

(x (t)) are collected. Therefore,
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where Z
pj

(u)"F[z
pj

(x(t))] and n@ is the number of terms resulting from the expansion. As
a result, bK

pj
are algebraic equations containing combinations of the coe$cients aL

pj
of the

original non-linear functions y
pj

(x(t)). Each of the N equations may be written in reverse
form
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where X
l
(u) and Z

pj
(u) are scalar &&inputs'' to the pth equation and the measured excitation

F
p
(u) at the pth response location is a scalar &&output'' of the equation. Equation (5) is

illustrated in Figure 1 as a multiple-input/single-output (MISO) model. By applying proper
spectral techniques [13], FRFs of each path of the model in Figure 1 can be identi"ed. The
FRFs correspond to the dynamic systems of order 0, 1 and 2. By inverting these identi"ed
FRFs, those corresponding to second order systems resemble s.d.o.f. FRFs from which mL

pl
,

cL
pl

and kK
pl

can be estimated using the s.d.o.f. modal analysis techniques [14]. From the
FRFs corresponding to systems of order zero and one, the remaining cL

pl
and kK

pl
as well as

the bK
pj

can be estimated by "tting curves of order zero and one to the spectrum. If desired,
once all of the mL

pl
, cL

pl
and kK

pl
for the pth model have been estimated, the linear damping an

sti!ness coe$cients of the elastic and dissipative elements can be resolved from the
equations of motion which must be explicitly known. Otherwise, mL

pl
, cL

pl
and kK

pl
are used to

construct M< , C< and K< . The coe$cients aL
pj

of the original non-linear functions >
pj

(u) can
also be resolved from the algebraic equations bK

pj
.

Figure 1. General MISO &&reverse path'' spectral model derived from Method A for the pth equation of motion,
equation (5).
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It should be strongly noted that this procedure can only be applied to the &&reverse path''
models given by equation (5) and illustrated in Figure 1, whose &&inputs''X

l
(u) in particular

are the responses of forced d.o.f.s. This is required in order for all of the &&inputs'' to the
model to the uncorrelated. If this is not the case, then the responses of the unforced d.o.f.s
can be described by a linear combination of the remaining &&inputs''. Consequently,
erroneous estimates of the paths of the model may result. This concept is illustrate by an
example in section 6.

4. METHOD B

Method B develops only one &&reverse path'' model from the entire set of N frequency
domain equations of motion, i.e., equation (2a). These equations are written in reverse form
as

F (u)"B< (u)X(u)#
n
+
j/1

a;
j
Y
j
(u), (6)

where C(u) has been replaced by the summation of spectra Y
j
(u) of non-linear function

vectors y
j
(x(t)), i.e., Y

j
(u)"F[y

j
(x(t))], multiplied by their corresponding coe$cient

matrices a;
j
which are estimated from the identi"cation process. The vectors y

j
(x (t)) consist

of non-linear functions of the same type, e.g., quadratic, cubic, "fth order, for describing the
non-linear restoring forces and the elements of a;

j
are the coe$cients of these functions.

Notice, y
j
(x (t)) are known quantities calculated as a function of the measured response x (t).

The vectors Y
j
(u) are column vectors of length q

j
, where q

j
is the number of locations it is

assumed that the jth type of non-linearity exists. The corresponding coe$cient matrices a;
j

are of dimension N]q
j
. It should be noted that formulation of the summation in equation

(6) is not unique. For instance, one may wish to represent all of the non-linear functions by
one single vector Y(u):
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where Y(u) is now a single vector containing all of the functions for describing the
non-linear restoring forces and A contains all of the coe$cients of these functions.
However, the form of equation (6) was chosen so that the elements of a;

j
have consistent

units and for additional reasons discussed in reference [10]. Equation (6) is illustrated in
Figure 2(a) as a &&reverse path'' system model. In contrast to Method A, here only one
multi-input/multi-output (MIMO) model is formulated by keeping the system response
and excitation in vector form, i.e., X (u)"[X

1
(u) X

2
(u) 2 X

N
(u)]T,

F(u)"[F
1
(u) F

2
(u) 2 F

M
(u)]T, where M is the number of applied and measured

excitations. Therefore, the path whose &&input'' is X(u) is the estimated dynamic sti!ness
matrix B< (u). By applying spectral conditioning techniques [9], an equivalent conditioned
model is obtained. This model is illustrated in Figure 2(b) where the subscripts in
parenthesis indicate that Y

j(~1:j~1)
(u) contains the components of the spectra of the jth

non-linear function vector Y
j
(u) uncorrelated with the spectra Y

1
(u) through Y

j~1
(u) of the

"rst through j!1 non-linear function vectors. See reference [9] for a more complete
description of this process. The coe$cient matrices a;

j
have been transformed

to L<
jF

(u) due to the conditioning process. However, the a;
j

can still be



Figure 2. General MIMO &&reverse path'' spectral model derived from Method B. (a) Model with correlated
inputs, equation (6). (b) Equivalent conditioned model with uncorrelated inputs. (c) &&Forward path'' of the
underlying linear system.
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recovered as discussed later. Notice that the last path of the conditioned model is the
estimated dynamic sti!ness matrix B< (u) uncharged by the conditioning process. Although
the path itself remains uncharged, the &&input'' X

(~1:n)
(u) of this path is now the conditioned

system response vector which is uncorrelated with the n non-linear function vectors Y
1
(u)

through Y
n
(u) as indicated by the subscript (!1: n). This path alone can be re-reversed as

shown in Figure 2(c) to identify m.d.o.f. dynamic compliance functions H< (u) using new
conditioned frequency response estimates [9]:

conditioned &&H
c1
'' estimate: [H< *c1+(u)]T"G~1

FF(~1:n)
(u)G

FX (~1:n)
(u),

(8a,b)
conditioned &&H

c2
'' estimate: [H< *c2+(u)]T"G~1

XF(~1:n)
(u)G

XX (~1:n)
(u).
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These estimates are the underlying linear dynamic compliance functions of the system and
are una!ected by the non-linearities since X

(~1:n)
(u) is uncorrelated with Y

1
(u) through

Y
n
(u). Calculation of G

XX (~1:n)
, G

XF (~1:n)
and G

FF (~1:n)
is covered in reference [9]. Unlike

Method A where s.d.o.f. techniques are used to extract physical properties from the s.d.o.f.
FRFs, modal parameters of the underlying linear system are determined from the estimated
m.d.o.f. dynamic compliance matrix H< (u) using the m.d.o.f. modal parameter identi"cation
methods [12]. Although not all of the elements H

ij
(u) of the matrix H(u) will be identi"ed

since excitations at all response locations are not required, reciprocity may be employed to
obtain additional elements, i.e., H

ij
(u)"H

ji
(u). This step allows for identi"cation of

non-linearities at locations away from applied excitations as discussed next and illustrated
later by an example.

From the derivation given by the authors in reference [9], the coe$cient matrices a;
j
are

estimated from the following recurrence equation:
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where one starts by solving for a;
n
and ends solving for a;

1
. The left-hand side of equation (9)

is multiplied out symbolically since not all of the elements of H(u) may be known if
excitations are not applied at all response locations. In addition, estimation of some of the
coe$cients within the matrix a;

j
may not be possible without use of additional elements of

H(u). These additional elements can be determined by applying reciprocity, i.e.,
H

ij
(u)"H

ji
(u). This procedure is more clearly illustrated by an example.

5. ILLUSTRATIVE EXAMPLE

To illustrate the two di!erent approaches, consider the two-d.o.f. non-linear system of
Figure 3(a). This is the same non-linear system used by Rice and Fitzpatrick [11] to
illustrate their identi"cation procedure where cubic non-linear spring elements exist
between m

2
and m

1
and between m

1
are ground. Non-dimensional parameters are chosen

identical to those used in reference [11]: m
1
"1)0, m

2
"0)2, k

1
"1)0, k

c
"0)2, c

1
"0)2,

c
c
"0)01, b

1
"0)05, b

c
"0)05. Initially, excitations are applied to both d.o.f.s. The case

where only one excitation is applied ( f
1
(t)"0) will also be considered. Excitations f

1
(t) and

f
2
(t) are independent Gaussian excitations with D f

1
(t)D"D f

2
(t)D"5 N-r.m.s., mean"0 and

variance"1. To obtain the necessary input/output data for the identi"cation process,
a "fth order Runge}Kutta Fehlberg numerical integration algorithm is used [15]. The time
steps (Dt) are held constant so that the fast Fourier transform (FFT) can be applied to the
data, and high-frequency numerical simulation errors are minimized by choosing a Nyquist
frequency 16 times greater than the highest frequency of interest. The following numerical
simulation parameters are used: Dt"62)5 ms, number of samples"15(214), total
period"15(210) ms. Note, results presented here will be di!erent than that reported in
reference [11] since numerical simulation and signal processing parameters are di!erent.

Before the application of the non-linear system identi"cation techniques, linear
identi"cation is employed to illustrate the e!ects that the non-linear spring elements have
on the response of the system. Figure 3(b) illustrates the magnitude of a frequency response
function HK *1+

12
(u) estimated using the conventional &&H

1
'' estimation method [16], where

superscript [1] indicates an &&H
1
'' estimate and the subscripts indicate that this is

a cross-function between the response X
1
(u) and excitation F

2
(u). The following procedure



Figure 3. Two d.o.f. example system. (a) Physical system with cubic non-linear spring elements (b) Magnitude of
dynamic compliance spectra H

12
(u): **, DHK *1+

12
(u) D; }s}s}, DH

12
(u) D.
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is used for all spectral calculations presented throughout this article. The sampled data are
"rst divided into 30 averages consisting of 213 samples per average. Since the Nyquist
frequency is much greater than the highest frequency of interest, an eighth order Chebyshev
type-I low-pass "lter with a cut-o! frequency at 0)5Hz is applied next. The data are then
re-sampled at a new Dt@"16Dt and a Hanning window is employed to remove leakage
errors. Also shown is the corresponding dynamic compliance function H

12
(u) of the

underlying linear system synthesized from the systems linear parameters, i.e., mass, damping
and linear sti!ness matrices. This compliance function would result if the non-linearities did
not exist, i.e., b

1
"b

2
"0 or if the excitation was low such that the non-linear elastic force

terms had no detectable e!ects. However, since excitation was chosen high enough to
produce signi"cant non-linear response, estimated compliance functions such as HK *1+

12
(u) in

Figure 3(b) result. As illustrated, the estimated compliance function is highly corrupted by
the e!ects of the non-linear spring elements and the use of m.d.o.f. modal parameter
estimation techniques for extracting e!ective modal parameters for this excitation level
would be ine!ective and hence no model could be developed. To overcome this obstacle,
methods for the identi"cation of non-linear systems such as those discussed in this paper are
applied.

For the non-linear system identi"cation techniques, Methods A and B, the assumption is
made that the location and types of non-linearities are known, i.e., cubic non-linear sti!ness
elements exist at both junctions of the example system. However, as mentioned in section 2,
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this assumption is not required for the application of either of the two methods. The system
model is based on the equations of motion given here in both time and frequency domains:

M< xK (t)#C< x5 (t)#K< x (t)#a;
1
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where BK
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(u)"!u2MK
qk
#iuCK

qk
#KK

qk
and MK

qk
, CK

qk
and KK

qk
are the elements of the qth

row and kth column of the matrices M< , C< and K< , respectively. As previously shown in the
analytical development, the two identi"cation approaches deviate in methodology from this
point onwards.

6. APPLICATION OF METHOD A

For Method A, each equation of the frequency domain system of equations (10b), is
identi"ed separately using the &&reverse path'' analysis:
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To remain consistent with the formulation of Rice and Fitzpatrick [11], the non-linear
function >

2
(u) is expanded, >
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Equations (12a, b) are illustrated in Figure 4(a, b) as two MISO models. Identi"cation of
these models commences using conventional techniques for MISO systems [13]. Beginning
with the identi"cation of the model in Figure 4(a) results in spectra for each of the six paths
of the model. As discussed in the derivation, the inverse of these spectra are analyzed.
Therefore, the spectrum corresponding to BK

11
(u)"!u2MK

11
#iuCK

11
#KK

11
"!u2mL

1
#

iu(cL
1
#cL

c
)#(kK

1
#kK

c
) is graphed as D1/BK

11
(u) D in Figure 5(a). As a result, this spectrum

resembles that of a s.d.o.f. mechanical oscillator. Also plotted in Figure 5(a) is the inverse of



Figure 4. MISO &&reverse path'' spectral models of example system derived from Method A. (a) First equation of
motion, equation 12(a). (b) Second equation of motion, equation 12(b).
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the corresponding dynamic sti!ness function B
11

(u) of the underlying linear system that
was synthesized using the systems mass, damping and linear sti!ness coe$cients. As with
the synthesized compliance function H

12
(u) illustrated in Figure 3(b), this dynamic sti!ness

function would result if the non-linearities did not exist. By applying linear s.d.o.f.
identi"cation techniques [14], mL

1
, (cL

1
#cL

c
) and (kK

1
#kK

c
) can be determined from the

spectrum 1/BK
11

(u). Since 1/BK
11

(u) is an accurate estimate of the synthesized dynamic
sti!ness function of the underlying linear system, mL

1
, (cL

1
#cL

c
) and (kK

1
#kK

c
) will be accurate

estimates of the actual m
1
, (c

1
#c

c
) and (k

1
#k

c
).

The spectrum of the "rst order system BK
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(u)"!u2MK
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#iuCK

12
#KK

12
"!iucL

c
!kK

c
is graphed in Figure 5(b, c) as Re[BK

12
(u)] and Im[BK

12
(u)], where Re[ )] indicates real part

and Im[ )] indicates imaginary part of BK
12

(u). Since Re[BK
12

(u)]"Re[!iucL
c
!kK

c
]"!kK

c
and Im[BK

12
(u)]"Im[!iucL

c
!kK

c
]"!ucL

c
, the spectrum Re[BK

12
(u)] is spectrally

independent and approximately equal to !k
c
. Likewise, the spectrum Im[BK

12
(u)] is equal

to zeros at u"0 with slope of !c
c
. Note, BK

12
(u) has been illustrated somewhat di!erently

here compared with how BK
12

(u) was illustrated in reference [11]. Although this has no
impact on the estimated quantities, the authors found it easier to determine the quantities k

c
and c

c
by illustrating BK

12
(u) as Re[BK

12
(u)] and Im[BK

12
(u)].

For the identi"cation of the third path, since !b
c
is a real constant, the spectrum of !bK

c
should be independent of frequency and real-valued approximately equal to !b

c
. The real

part of this spectrum is shown in Figure 5(d). As shown, Re[!bK
c
] is a good approximation

of !b
c
. Although not illustrated, the imaginary part of the spectrum is approximately zero.

The identi"ed spectra of the fourth and "fth paths are not shown since they are ratios of the
third path. The spectrum of the sixth path, i.e., (bK

1
#bK

c
), is also not shown. However, the

real part of the spectrum is approximately equal to b
1
#b

c
and the imaginary part is

approximately zero. Therefore, an accurate estimate has resulted. Since bK
c
was determined

from the spectrum of the third path, bK
1

can be determined from the spectrum of the sixth
path.

Proceeding to the identi"cation of the model in Figure 4(b) results in spectra for each of
the six paths of this model. The spectra are not illustrated here, however the accuracy of the
results are similar to the accuracy of the results shown for the model in Figure 4(a). By



Figure 5. Multi-excitation results of Method A. (a) Magnitude of inverse spectrum of second order system
B
11

(u):**, D1/BK
11

(u) D; }s}s}, D1/B
11

(u) D. (b) Real part of "rst order system B
12

(u):**, Re [BK
12

(u)]; }s}s},
!k

c
. (c) Imaginary part of "rst order system B

12
(u):**, Im [BK

12
(u)]; }s}s}, !uc

c
. (d ) Real part of spectral

estimate of coe$cient b
c
: **, Re [!b)

c
]; }s}s}, !b

c
.
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applying linear s.d.o.f. identi"cation techniques [14] to the spectrum of 1/BK
22

(u), mL
2
, cL

c
and

kK
c
can be estimated.
With excitation applied to both m

1
and m

2
of the example system, a fully identi"ed model

has been determined using Method A. However, identi"cation of the example system will
now be conducted using Method A with only one excitation applied to m

2
. The example

system is again simulated to calculate response data using the same simulation parameters
described in section 5 with the exception that f

1
(t)"0. The identi"cation process is carried

through as before, however the &&output'' of the model illustrated in Figure 4(a) is zero; or in
other words, the left-hand side of equation 12(a) is zero. Therefore, the identi"cation process
proceeds with the identi"cation of the model illustrated in Figure 4(b). Estimated spectra of
the "rst two paths of the model, BK

22
(u) and BK

21
(u), are shown in Figure 6(a, b). As

illustrated, these spectra are inaccurate estimates of B
22

(u) and B
21

(u). This result is due to
the dependence between the &&inputs'' to the &&reverse path'' model. Since no independent



Figure 6. Single excitation results of Method A. (a) Magnitude of inverse spectrum of second order system
B
22

(u):**, D1/BK
22

(u) D; }s}s}, D1/B
22
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21
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!k

c
. (c) Multiple coherence c2

X1
:I (u): ==== , single excitation case; }s}s}, multi-excitation case.
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random excitation is applied to m
1
, the response X

1
(u) can be described by linear

combinations of the remaining &&inputs'' to the model, i.e., X
2
(u) and Z

1
(u) through Z

4
(u).

This linear dependence can be proved by the multiple coherence function c2
X1

:I
(u) between

X
1
(u) and the remaining &&inputs'' I3[X

2
(u), Z

1
(u), Z

2
(u), Z

3
(u), Z

4
(u)]. The signi"cance

of c2
X1

:I
(u) is that a value of 1 for a given value of u indicates that X

1
(u) can be obtained by

linear operations of the other &&inputs'' [13]. A plot of c2
X1

:I
(u) is shown in Figure 6(c) for the

single excitation case considered here, and also for the previously investigated
multi-excitation case. Notice that for the single excitation case, c2

X1
:I
(u) is unity over the

entire frequency range (0)u)n) indicating that X
1
(u) is not providing any unique

information to the &&output'' of the model. Consequently, the model in Figure 4(b) is poorly
de"ned for the single-excitation case and poor estimates of all of the model's paths result.
This is in contrast to the previously investigated multi-excitation case where c2

X1
:I
(u) does

not attain unity for any value of u(0)u)n), Here c2
X1

:I
(u) indicates that X

1
(u) cannot be

obtained by a linear combination of the other &&inputs'' to the model (X
2
(u), Z

1
(u) through

Z
4
(u)) due to the independently applied excitation F

1
(u). As a result, the estimated spectra

are accurate as was previously shown.
It should be noted that although Method A was unsuccessful at accurately identifying the

example system with one excitation, the method can still be applied to systems that do not
have excitations applied at every response location. However, only the &&reverse path''
models for the system given by equation (5) and illustrated in Figure 1 whose &&inputs''X

l
(u)

are responses of forced d.o.f.s will be accurately identi"ed. This corresponds only to forced
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d.o.f.s that are coupled only to forced d.o.f.s. Any of the &&reverse path'' models whose
&&inputs'' X

l
(u) are responses of unforced d.o.f.s should not yield accurate spectrum of the

models paths, as the example has illustrated. Therefore, not all of the system can be
accurately identi"ed unless excitations are applied at every response location.

7. APPLICATION OF METHOD B

Speci"c application of the authors' approach to the example system is as follows. First
consider the case with excitations applied to both d.o.f.s. The system of equations 10(b) as
a whole are written in reverse form as one m.d.o.f. model:

G
F
1
(u)

F
2
(u)H"C

BK
11

(u) BK
12

(u)

BK
21

(u) BK
22

(u)DG
X

1
(u)

X
2
(u)H#C

bK
1

!bK
c

0 bK
c
D G
>
1
(u)

>
2
(u)H . (13)

The MIMO model is illustrated in Figure 7(a). Note that the &&inputs'' and &&outputs'' are in
vector form and the path corresponding to the vector &&input'' X(u) is the dynamic sti!ness
matrix B< (u). Spectral conditioning [9] is applied to the &&inputs'' and &&outputs'' of this
model to obtain an equivalent conditioned model as illustrated in Figure 7(b). The second
path of the conditioned system is re-reversed as shown in Figure 7(c) and dynamic
compliance functions are estimated, with in#uences from the non-linearities removed, using
one of the conditioned frequency response estimators of equations 8(a, b). One of the
estimated dynamic compliance functions HK *c2+

22
(u) is illustrated in Figure 8(a), where

superscript [c2] indicates a conditioned &&H
c2
'' estimate calculated by equation 8(b). Also

plotted is the corresponding underlying linear system's dynamic compliance function
synthesized from M, C and K as discussed in section 5. Using m.d.o.f modal parameter
Figure 7. MIMO &&reverse path'' spectral model of example system derived from Method B. (a) Model with
correlated inputs, equation (13). (b) Conditioned model with uncorrelated inputs. (c) &&Forward path'' of the
underlying linear system.



Figure 8. Multi-excitation results of Method B. (a) m.d.o.f. compliance function H
22

(u):**, DHK *c2+
22

(u) D; }s}s},
DH

22
(u) D. (b) Real part of coe$cient b

c
: **, Re [b)

c
]; }s}s}, b

c
.
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identi"cation [12], natural frequencies, damping ratios and mode shapes can be
determined. Since the conditioned dynamic compliance spectra are accurate estimates of the
underlying linear system's dynamic compliance functions, as the sample result shows in
Figure 8(a), these modal parameters will be accurate estimates of the underlying linear
system's modal parameters.

Once the dynamic compliance functions have been determined, the coe$cient matrix a;
1

is estimated using equation (9). Explicitly for this example, the equation takes the following
form:

a; T
1
H< T(u)"G~1

11
(u)(G

1F
(u)H< T(u)!G

1X
(u)),

C
bK
1

0

!bK
c

bK
c
DC

HK
11

(u) HK
21

(u)

HK
12

(u) HK
22

(u)D
"C

G
11

(u) G
12

(u)

G
21

(u) G
22

(u)D
~1

AC
G

1F1
(u) G

1F2
(u)

G
2F1

(u) G
2F2

(u)D C
HK

11
(u) HK

21
(u)

HK
12

(u) HK
22

(u)D!C
G

1X1
(u) G

1X2
(u)

G
2X1

(u) G
2X2

(u)DB.
(14a, b)



Figure 9. Single excitation results of Method B. (a) m.d.o.f compliance function H
22

(u):**, DHK *c2+
22

(u) D; }s}s},
DH

22
(u) D. (b) Real part of coe$cient b

1
: **, Re [b)

1
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Here, since excitations have been applied to both m
1

and m
2
, then H< T (u) is fully populated.

Therefore, [H< T(u)]~1 can be post-multiplied to both sides of equation 14(b) in order to
obtain estimate bK

1
and bK

c
. The spectrum Re[bK

c
] is illustrated in Figure 8(b) along with the

actual value of b
c
. As illustrated, the spectrum accurately estimates the real value b

c
.

Although Im[bK
c
] is not shown, the spectrum is approximately equal to zero. For bK

1
, the

results are similar, Re[bK
1
]+b

1
, Im[bK

1
]+0.

Now consider the case where excitation is only applied to m
2
. Since F

1
(u)"0, only the

second column of the dynamic compliance matrix H< (u) can be determined,

H< (u)"C
? HK

12
(u)

? HK
22

(u)D , (15)

where ? indicates the unknown dynamic compliance functions that cannot be estimated
from the single excitation data. The compliance HK *c2+

22
(u) is shown in Figure 9(a) illustrating

that the underlying linear system compliance H
22

(u) is accurately estimated. Notice that
this is the same compliance function shown in Figure 8(a) for the multiple excitation case
and that an equal amount of accuracy is obtained for both multiple and single excitations.
Although only the second column of H< (u) is determined, modal parameter estimation
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techniques [12] can still be applied to the two known estimates of equation (15) in order to
obtain the systems underlying modal parameters una!ected by the non-linearities. Now
since H< (u) is the underlying linear dynamic compliance matrix, reciprocity is valid and can
be applied to determine HK r

21
(u)"HK

12
(u), where superscript r signi"es that the function has

been determined from reciprocity. Using this additional element in equation (15) and
plugging equation (15) into equation (14a) gives

C
bK
1

0

!bK
c

bK
c
DC

? HK r
21

(u)

HK
12

(u) HK
22

(u)D
"C

G
11

(u) G
12

(u)

G
21

(u) G
22

(u)D
~1

AC
0 G

1F2
(u)

0 G
2F2

(u)D C
? HK r

21
(u)

HK
12

(u) HK
22

(u)D!C
G

1X1
(u) G

1X2
(u)

G
2X1

(u) G
2X2

(u)DB. (16)

Notice, since F
1
(u)"0, the "rst column of G

1F
(u) contains zeros. By multiplying out the

left-hand side of equation (16), the signi"cance of reciprocity can be seen,

C
? bK

1
HK r

21
(u)

? bK
c
(HK

22
(u)!HK r

21
(u)D

"C
G

11
(u) G

12
(u)

G
21

(u) G
22

(u)D
~1

AC
0 G

1F2
(u)

0 G
2F2

(u)D C
? HK r

21
(u)

HK
12

(u) HK
22

(u)D!C
G

1X1
(u) G

1X2
(u)

G
2X1

(u) G
2X2

(u)DB. (17)

Using the equations from the second column of equation (17), bK
1

and bK
c
can be determined.

Notice, without the use of reciprocity, bK
1

and b)
c
cannot be determined. As shown in Figure

9(b), the spectrum of bK
1

is an accurate estimate of b
1
. Although not shown, the spectrum of

bK
c
is also an accurate estimate of b

c
. Now, a complete system model has been identi"ed with

excitation only applied to m
2
.

8. CONCLUSION

The mathematical steps and the illustrative example described in this paper highlight two
unique identi"cation procedures for non-linear systems. Method A [11] identi"es
individual &&reverse path'' models for each of the equations of motion describing the
non-linear system. From each model, physical properties of the underlying linear system
can be determined using s.d.o.f. identi"cation techniques [14]. However, in order to identify
the entire system utilizing Method A, excitations are necessary at every response location.
Method B [9] overcomes this limitation by identifying one &&reverse path'' model that
includes all of the equations of motion. Modal parameters of the underlying linear system
are then extracted from m.d.o.f. frequency response functions using m.d.o.f. modal
parameter estimation techniques [12]. This establishes the core di!erence between the two
methods discussed in this paper. Arguably, Method A is advantageous since physical
properties are identi"ed, and typically physical domain properties are preferred over modal
domain properties (modal properties can be determined from physical properties but the
opposite is not always true). However, since excitations must be applied and measured at
each response location for complete identi"cation of the system, application of Method A to
systems with a large number of d.o.f.s could be a di$cult task. Although Method B obtains
model parameters of the underlying linear system, the advantage of the method is that it is
better suited for systems with a large number of d.o.f.s where it may not be feasible to apply
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excitations to each response location. Future work is encouraged in this area including
application of both methods to real-life experiments.
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